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Abstract—The consolidated 6T SRAM bit cell is comprised
of six MOS transistors, four of which pertain to the individual
inverter loop structure for every single bit of data to be accessed.
Such bit cells operate with intrinsic nonlinear properties, as
predicted by the MOSFET behavior. It is of deep interest that the
well functioning of the overall memory structure is guaranteed,
given that the stability of individual cells is studied further
beyond the elementary for both their static and dynamic criteria.
We intend to present an overview of fruitful knowledge around
the noise margins associated to the inverter loop, backed by
simulations performed in Synopsis HSPICE with a 45-nm CMOS
model. The information envisioned through these simulations
may be useful futurely to improve a bit cell’s overall operation.

I. INTRODUCTION

A circuit composed of two back-to-back connected inverters
(Fig. 1), namely distinguished in feedback and feedforward,
can be simulated for its DC solution. Equivalent to such
topology is the 6T SRAM bit cell (Fig. 5), which counts
with three DC solutions: a pair of stable ones, in direct
correlation to the binary values, and a metastable solution,
commonly defined as the saddle point [1]. All are coincident
to the only points where voltage transfer curves (VTC) of both
feedback and feedforward inverters intertwine, drawing what’s
referred to as the ”butterfly curve”. Would a noise source to
be introduced, i.e., a DC voltage source Vn, there should be a
margin of adverse voltage branched in the circuit to which the
cell would hold its stability of input and output logic values
without flipping to an alternate state, hence the definition of
the Static Noise Margin (SNM).
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Fig. 1. Closed-loop configuration of two back-to-back connected inverters.

The data stability notion of SNM, alongside with proba-
bilistics, presents itself as useful enough for designing of the
memory in many cases, but disregards that the cell operates in
a dynamic environment, thus limiting the handling of stability
information to a short and barely flexible concept. Attempts at

grasping the transient behavior of the cell through simulations
have proved valuable to a future interest of better dimensioning
and perfecting desired aspects of the cell’s performance.

II. STATIC NOISE MARGIN

The static condition to a stable inverter loop bit cell requires
it to hold on to its state at both input and output, for any
DC voltage adversely applied to it, under a certain margin.
The butterfly curve, as previously mentioned, results from the
intercepting of the feedback and feedforward inverter’s voltage
transfer curves, such as in Fig. 2.
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Fig. 2. Butterfly curve, derived from the intercepting of the inverters’ VTC,
and the largest possible square enclosed by one of its lobes.

A useful technique for obtaining the numeric value of the
SNM is to search for the largest possible square enclosed by
the individual lobes of the butterfly curve [2]. Alternatively, the
square’s diagonal is also meaningful - if the plot were to be
rotated and aligned to the quadrant’s bisector axis, depicted
as the larger dashed line in Fig. 2, then the diagonal (i.e.,
the smaller dashed line) would match the distance between
the maximum and minimum values of the rotated feedforward



and feedback VTC, as depicted in Figs. 3 and 4. Finally, a
square geometry with this given diagonal ensures the SNM
by the division of the measurement by

√
2, which implies the

square’s own dimension:

SNM1 =
|(max (V TC1)−min (V TC2))|√

2
(1)

SNM2 =
|(min (V TC1)−max (V TC2))|√

2
(2)
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Fig. 3. Rotation of the butterfly curve in vertical alignment to the bisector
axis.
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Fig. 4. Subtraction of V TC1 by V TC2, capturing maximum and minimum
values of the resulting curve in accordance to the squares’ diagonal lengths.

The introduced butterfly curve was drawn by simulating
for the open-loop of a single one of the identical inverters
and intercepting it with its duplicate. The PMOS and NMOS
widths chosen for the device are of 313, 28nm and 200nm,
respectively, which allow for a more symmetric curve when

composing the closed-loop configuration, for demonstration
purposes.

One could argue that the ”actual” butterfly curve, regard-
ing both inverters simultaneously, would differ to that of a
single open-loop inverter with the same PMOS and NMOS
dimensions, transcribed to the matching closed-loop by the
aforementioned intercepting of the transfer curves. Further
simulations prove otherwise: the SNM maintains its value
either way. Therefore, the butterfly curve and the SNM can
be assured solely on the open-loop characteristics of isolated
inverter components, whether components of a symmetric loop
or not. As such, asymmetric loops, pairs of inverters with
different MOS dimensions, will require the open-loop transfer
curves to be distinguished between feedback and feedforward
inverters, aiming to correctly compose the resulting butterfly
curve.

III. DYNAMIC NOISE MARGIN

As previously mentioned, knowledge of the static criteria
to data stability might not suffice. The SRAM operates in
a dynamic environment, as do the individual bit cells. The
concept of a sufficient adverse voltage to flip the bit isn’t
substantial enough because noise interferes with the circuit
performance over time, and the period of time the noise is
active at any given read/write access has a strong influence
on whether it will go back to its original state or flip to an
opposite state.
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Fig. 5. Non-accessed 6T Static Random Access Memory bit cell.

The 6T SRAM bit cell, presented in Fig. 5, is regarded
as non-accessed when it’s not undergoing any read/write
operation. In this case, the circuit input and output, v1(t) and
v2(t), respectively, can be thought of as the voltage drop to
discrete capacitor elements, taking into account the memory
bit-line parasitic capacitance. Under regular circumstances of
reading or writing of the memory, the remaining pair of NMOS
transistors would be driven to a logic ’1’ by the word-line.



A. Dynamic behavior to external noise sources

Simulations were performed by introducing a draining cur-
rent noise source of 53, 3µA to the cell’s input and verifying its
dynamics for both different pulses and MOSFET dimensions.
Such parameters interfere with how the cell will respond under
transient exposure. In Fig. 6, the current pulse selected is
of 3ns, with all two PMOS and two NMOS device widths
ranging from 100nm to 500nm.
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Fig. 6. Dynamics of the SRAM bit cell for a draining current applied to the
input of the inverter loop.

Clearly, at some critical value between 300nm and 350nm,
the cell destabilizes and alternates its state from logic ’1’
to ’0’. For any scenario where it biases towards the same
equilibrium of stability after the current pulse is applied, it
can be said that the cell did not leave its initial region of
convergence, whereas, in the opposite case, the cell has fallen
onto the opposite domain of attraction, due to the other stable
solution.

The larger the MOSFET width, the longer will be the noise
in the input to which the cell will still hold the bit of data,
i.e., return to its original state equilibrium, besides the noise
applied to it. Whether the logic value flips or not, the behavior
is represented over time by singular trajectories on the space
state (Fig. 7), and the system dynamics is distinguished by
how fast it tends to accomodate between each disturbance.

Analysis of the cell’s response when subjected to a limited
external noise attests that it does operate under the influence
of attracting convergence points, but is not sufficient to clarify
it and better characterize the space state for a non-accessed bit
cell, as would do a two-dimensional vector field, for instance.

The following section pursues a better understanding of the
regions of convergence, generalizing trajectories on the space
state by simulating for multiple initial conditions of input and
output voltage values.
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Fig. 7. Trajectories on the space state, associated to each circumstance of the
cell’s behavior when subjected to noise for a time period.

B. Dynamic behavior to gridded initial conditions

Primarily, these SPICE simulations focused on close obser-
vation to the 6T bit cell’s nonlinear dynamics, subjected to a
grid of initial conditions on the space state. Trajectories were
then associated to each point on the grid as the cell biased
towards one of its three DC solutions, and data manipulated as
to approximate the space state to an approachable vector field.
Every trajectory on the grid of Fig. 8 is composed of 5000
samples, spaced consecutively by a time interval of 1ps. For
better resolution of distinguishable trajectories, the samples
were greatly narrowed.
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Fig. 8. Trajectories on the space state for an 11x11 grid of initial conditions,
over 5ns transient simulations.

The space state to an inverter loop circuit is segmented into
two regions of convergence, as verified for a noise source



introduced in the system, either flipping the cell or unbalancing
it until the return to an initial state [3]. If initial conditions
(IC) of input and output values were set beforehand, in place
of an external noise, the dynamics of the cell would similarly
converge to the circumstances of stability.

Simulating for an IC grid on the space state meets these
expectations, as different starting points reenact trajectories of
attraction towards the pair of stable conditions and, possibly,
the metastable equilibrium, which draws the separatrix be-
tween the other two domains [4]. Based on a set of trajectories
that roughly summarize the non-accessed cell dynamics, meth-
ods of two-dimensional interpolation allow for an extended
perception of the plane as a vector field, as demonstrated in
Fig. 9.
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Fig. 9. Bit cell’s space state dynamics in light of a vector field, given a 9x9
grid of initial conditions.

The significance of the individual trajectories and each
vector quantity that composes it lies on the understanding that,
for every uniform sample period, according to the space state
condition, the cell may be more or less inclined to converge
to a stable equilibrium. The vector field, as such, comprises
the information of direction and velocity to different points on
the grid. In other words, if each vector ~A were to be thought
in terms of its components, then the projection of it on the
input axis is a measurement of horizontal velocity (Av1) and,
similarly, the projection on the output axis ensures the up
or downwards velocity (Av2). As a whole, these quantities
compose the space state vector field given by Equation (3):

~A(v1(t), v2(t)) = Av1(t)~i+Av2(t)~j (3)

For every point on the plane, the cell follows a pattern, until
stabilizing on either one of the DC solutions. The observable
velocity vectors obtained in the transient simulations for the
initial conditions underlie how fast the non-accessed cell
converges to said equilibrium states. A better analogy can then
be computed as the divergence of the vector field, illustrated by
a three-dimensional coloured mesh in Fig. 10, where the lower
divergence implies a convergence point, and can be expressed
mathematically in terms of the vector field ~A (4).

∇. ~A(v1, v2) = ∂Av1

∂v1
+
∂Av2

∂v2
(4)

Fig. 10. Divergence of the space state vector field for the non-accessed 6T
SRAM bit cell.

Despite limited resolution to the mesh interpolation of the
vector field and subsequent divergence computation, this fur-
ther notion of the space state contemplates the two converging
points, or bi-stable solutions, visualized as the blue lateral
fringes, while the meta-stable equilibrium is of a nearly neutral
stance, hence why it’s commonly referred to as the saddle
point.

IV. CONCLUSION

The stability of a memory cell plays a major role on
its performance, whether on standby, aiming to retain data,
or submitted to non-destructive read and successful write
operations [4].

We surmised the most prominent techniques and informa-
tion regarding the static and dynamic criteria for the state-of-
the-art 6T SRAM bit cell, providing further approaches to the
non-accessed behavior under theoretical situations of distress.
The analysis of the space state as a vector field conceives the
relevant notion of its divergence, allowing for future purposes
of enhancing the cell’s dynamics. Studies to come may further
explore the pertinence of some of the memory’s characteristics
in relationship to the introduced conceptions.
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